Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    The Dust Ring of Luminous Blue Variable Candidate HD 168625: Infrared Observations and Model Calculations

    O'Hara, Timothy B.
    Meixner, Margaret
    Speck, Angela K.
    Ueta, Toshiya
    Bobrowsky, Matthew
    View/Open
    [PDF] Article (773.9Kb)
    Date
    2003
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    We present a 2.218 lm image from the Hubble Space Telescope/Near Infrared Camera and Multi-Object Spectrometer (NICMOS) and a 55 lm image from ISOPHOT of the dust ring surrounding the luminous blue variable (LBV) candidate HD 168625, together with new temperature and optical depth maps derived from mid-IR images. The shell is detached from the star in the near-IR, and substructure in the overall toroidal shell is visible. The far-IR image constrains the extent of the dust shell to 2500 in diameter, providing an upper radius limit for modeling. The temperature maps and the NICMOS image show evidence for very small transiently heated dust grains in the shell. The opacity maps show higher optical depth in the limbs, consistent with interpretation of the dust shell as an equatorially enhanced torus inclined 60 with respect to the observer. An overall trend in the dust emission location with wavelength is observed and interpreted as a variation with respect to location in the nebula of either the dust grain size distribution or gas-to-dust mass ratio. Radiative transfer calculations using 2-Dust indicate that a mass-loss event occurred 5700 yr ago with a rate of ð1:9 0:1Þ 10 4 M yr 1, creating a dust torus that currently has a V 0:22 in the equatorial plane and a dustmass of ð2:5 0:1Þ 10 3 M .Using published values for the gas mass, we find a gas-to-dust mass ratio of 840, which is 4 times higher than current estimates for the interstellar medium. In addition to a high equator-to-pole density ratio ( 31) torus, an ellipticalmidshell is needed to reproduce the appearance and spectral energy distribution of the dust. Therefore, HD 168625 is an excellent example of proposed models of LBV nebulae in which a stellar wind interacts with a preexisting density contrast and creates a blowout in the polar direction perpendicular to the equatorial ring. The circumstellar shell is much lower in mass than that of LBV Carinae, suggesting thatHD168625 had a lowermass progenitor.
    URI
    http://hdl.handle.net/10355/9938
    Citation
    Timothy B. O'Hara et al. 2003 ApJ 598 1255
    Collections
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems