Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Viscous corrections to the resistance of nano-junctions: a dispersion relation approach

    Roy, Dibyendu
    Vignale, Giovanni, 1957-
    Di Ventra, Massimiliano
    View/Open
    [PDF] Article (189.6Kb)
    Date
    2011
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    It is well known that the viscosity of a homogeneous electron liquid diverges in the limits of zero frequency and zero temperature. A nanojunction breaks translational invariance and necessarily cuts off this divergence. However, the estimate of the ensuing viscosity is far from trivial. Here, we propose an approach based on a Kramers-Kr\"onig dispersion relation, which connects the zero- frequency viscosity, $\eta(0)$, to the high-frequency shear modulus, $\mu_{\infty}$, of the electron liquid via $\eta(0) =\mu_{\infty} \tau$, with $\tau$ the junction-specific momentum relaxation time. By making use of a simple formula derived from time-dependent current-density functional theory we then estimate the many-body contributions to the resistance for an integrable junction potential and find that these viscous effects may be much larger than previously suggested for junctions of low conductance.
    URI
    http://hdl.handle.net/10355/9989
    Citation
    arXiv:1010.2959v2
    Collections
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems