Electrical Engineering and Computer Science publications (MU)

Permanent URI for this collection

Items in this collection are the scholarly output of the Department of Electrical and Computer Engineering faculty, staff, and students, either alone or as co-authors, and which may or may not have been published in an alternate format. Items may contain more than one file type.

Browse

Recent Submissions

Now showing 1 - 5 of 59
  • Item
    Gamma oscillations in the basolateral amygdala : biophysical mechanisms and computational consequences
    (Society for Neuroscience, 2019) Feng, F.; Headley, D.B.; Amir, A.; Kanta, V.; Chen, Z.; Paré, D.; Nair, S.S.; Electrical Engineering and Computer Science
    The basolateral nucleus of the amygdala (BL) is thought to support numerous emotional behaviors through specific microcircuits. These are often thought to be comprised of feedforward networks of principal cells (PNs) and interneurons. Neither well-understood nor often considered are recurrent and feedback connections, which likely engender oscillatory dynamics within BL. Indeed, oscillations in the gamma frequency range (40100 Hz) are known to occur in the BL, and yet their origin and effect on local circuits remains unknown. To address this, we constructed a biophysically and anatomically detailed model of the rat BL and its local field potential (LFP) based on the physiological and anatomical literature, along with in vivo and in vitro data we collected on the activities of neurons within the rat BL. Remarkably, the model produced intermittent gamma oscillations (~50 70 Hz) whose properties matched those recorded in vivo, including their entrainment of spiking. BL gamma-band oscillations were generated by the intrinsic circuitry, depending upon reciprocal interactions between PNs and fast-spiking interneurons (FSIs), while connections within these cell types affected the rhythm's frequency. The model allowed us to conduct experimentally impossible tests to characterize the synaptic and spatial properties of gamma. The entrainment of individual neurons to gamma depended on the number of afferent connections they received, and gamma bursts were spatially restricted in the BL. Importantly, the gamma rhythm synchronized PNs and mediated competition between ensembles. Together, these results indicate that the recurrent connectivity of BL expands its computational and communication repertoire.
  • Item
    Biofluid modeling of the coupled eye-brain system and insights into simulated microgravity conditions
    (Public Library of Science, 2019) Salerni, F.; Repetto, R.; Harris, A.; Pinsky, P.; Prud'homme, C.; Szopos, M.; Guidoboni, G.; Electrical Engineering and Computer Science
    This work aims at investigating the interactions between the flow of fluids in the eyes and the brain and their potential implications in structural and functional changes in the eyes of astronauts, a condition also known as spaceflight associated neuro-ocular syndrome (SANS). To this end, we propose a reduced (0-dimensional) mathematical model of fluid flow in the eyes and brain, which is embedded into a simplified whole-body circulation model. In particular, the model accounts for: (i) the flows of blood and aqueous humor in the eyes; (ii) the flows of blood, cerebrospinal fluid and interstitial fluid in the brain; and (iii) their interactions. The model is used to simulate variations in intraocular pressure, intracranial pressure and blood flow due to microgravity conditions, which are thought to be critical factors in SANS. Specifically, the model predicts that both intracranial and intraocular pressures increase in microgravity, even though their respective trends may be different. In such conditions, ocular blood flow is predicted to decrease in the choroid and ciliary body circulations, whereas retinal circulation is found to be less susceptible to microgravity-induced alterations, owing to a purely mechanical component in perfusion control associated with the venous segments. These findings indicate that the particular anatomical architecture of venous drainage in the retina may be one of the reasons why most of the SANS alterations are not observed in the retina but, rather, in other vascular beds, particularly the choroid. Thus, clinical assessment of ocular venous function may be considered as a determinant SANS factor, for which astronauts could be screened on earth and inflight.
  • Item
    GenomeFlow : a comprehensive graphical tool for modeling and analyzing 3D genome structure
    (Oxford University Press, 2019) Trieu, T.; Oluwadare, O.; Wopata, J.; Cheng, J.; Electrical Engineering and Computer Science
    Motivation: Three-dimensional (3D) genome organization plays important functional roles in cells. User-friendly tools for reconstructing 3D genome models from chromosomal conformation capturing data and analyzing them are needed for the study of 3D genome organization. Results: We built a comprehensive graphical tool (GenomeFlow) to facilitate the entire process of modeling and analysis of 3D genome organization. This process includes the mapping of Hi-C data to one-dimensional (1D) reference genomes, the generation, normalization and visualization of two-dimensional (2D) chromosomal contact maps, the reconstruction and the visualization of the 3D models of chromosome and genome, the analysis of 3D models and the integration of these models with functional genomics data. This graphical tool is the first of its kind in reconstructing, storing, analyzing and annotating 3D genome models. It can reconstruct 3D genome models from Hi-C data and visualize them in real-time. This tool also allows users to overlay gene annotation, gene expression data and genome methylation data on top of 3D genome models. Availability and implementation: The source code and user manual: https://github.com/jianlincheng/GenomeFlow.
  • Item
    Autocryopicker : an unsupervised learning approach for fully automated single particle picking in Cryo-EM images
    (BioMed Central Ltd., 2019) Al-Azzawi, A.; Ouadou, A.; Tanner, J. J.; Cheng, J.; Electrical Engineering and Computer Science
    Background: An important task of macromolecular structure determination by cryo-electron microscopy (cryo-EM) is the identification of single particles in micrographs (particle picking). Due to the necessity of human involvement in the process, current particle picking techniques are time consuming and often result in many false positives and negatives. Adjusting the parameters to eliminate false positives often excludes true particles in certain orientations. The supervised machine learning (e.g. deep learning) methods for particle picking often need a large training dataset, which requires extensive manual annotation. Other reference-dependent methods rely on low-resolution templates for particle detection, matching and picking, and therefore, are not fully automated. These issues motivate us to develop a fully automated, unbiased framework for particle picking. Results: We design a fully automated, unsupervised approach for single particle picking in cryo-EM micrographs. Our approach consists of three stages: image preprocessing, particle clustering, and particle picking. The image preprocessing is based on multiple techniques including: image averaging, normalization, cryo-EM image contrast enhancement correction (CEC), histogram equalization, restoration, adaptive histogram equalization, guided image filtering, and morphological operations. Image preprocessing significantly improves the quality of original cryo-EM images. Our particle clustering method is based on an intensity distribution model which is much faster and more accurate than traditional K-means and Fuzzy C-Means (FCM) algorithms for single particle clustering. Our particle picking method, based on image cleaning and shape detection with a modified Circular Hough Transform algorithm, effectively detects the shape and the center of each particle and creates a bounding box encapsulating the particles. Conclusions: AutoCryoPicker can automatically and effectively recognize particle-like objects from noisy cryo-EM micrographs without the need of labeled training data or human intervention making it a useful tool for cryo-EM protein structure determination.
  • Item
    A microfluidic based biosensor for rapid detection of Salmonella in food products
    (Public Library of Science, 2019) Liu, J.; Jasim, I.; Shen, Z.; Zhao, L.; Dweik, M.; Zhang, S.; Almasri, M.; Electrical Engineering and Computer Science
    An impedance based microfluidic biosensor for simultaneous and rapid detection of Salmonella serotypes B and D in ready-to-eat (RTE) Turkey matrix has been presented. Detection of Salmonella at a concentration as low as 300 cells/ml with a total detection time of 1 hour has been achieved. The sensor has two sensing regions, with each formed from one interdigitated electrode array (IDE array) consisting of 50 finger pairs. First, Salmonella antibody type B and D were prepared and delivered to the sensor to functionalize each sensing region without causing any cross contamination. Then the RTE Turkey samples spiked with Salmonella types B and D were introduced into the biosensor via the antigen inlet. The response signal resulted from the binding between Salmonella and its specific antibody demonstrated the sensor's ability to detect a single type of pathogen, and multiple pathogens simultaneously. In addition, the biosensor's selectivity was tested using non-specific binding of E. coli O157 and E. coli DH5 Alpha while the IDE array was coated with the Salmonella antibody. The results also showed the sensor is capable to differentiate low concentration of live Salmonella cells from high concentration of dead Salmonella cells, and high concentration of E. coli cells. A detailed study on antibody immobilization that includes antibody concentration, antibody coating time (0.5–3 hours) and use of cross-linker has been performed. The study showed that Salmonella antibody to Salmonella antigen is not a factor of antibody concentration after electrodes were saturated with antibody, while the optimal coating time was found to be 1.5 hours, and the use of cross-linker has improved the signal response by 45–60 percent.
Items in MOspace are protected by copyright, with all rights reserved, unless otherwise indicated.