Physics and Astronomy publications (MU)
Permanent URI for this collection
Items in this collection are the scholarly output of the Department of Physics and Astronomy faculty, staff, and students, either alone or as co-authors, and which may or may not have been published in an alternate format. Items may contain more than one file type.
Browse
Recent Submissions
Item Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials(American Association for the Advancement of Science, 2019) Zhu, H.; Mao, J.; Feng, Z.; Sun, J.; Zhu, Q.; Liu, Z.; Singh, D.J.; Wang, Y.; Ren, Z.; PhysicsThermoelectric modules, consisting of multiple pairs of n- and p-type legs, enable converting heat into electricity and vice versa. However, the thermoelectric performance is often asymmetrical, in that one type outperforms the other. In this paper, we identified the relationship between the asymmetrical thermoelectric performance and the weighted mobility ratio, a correlation that can help predict the thermoelectric performance of unreported materials. Here, a reasonably high ZT for the n-type ZrCoBi-based half-Heuslers is first predicted and then experimentally verified. A high peak ZT of ~1 at 973 K can be realized by ZrCo0.9Ni0.1Bi0.85Sb0.15. The measured heat-to-electricity conversion efficiency for the unicouple of ZrCoBi-based materials can be as high as ~10 percent at the cold-side temperature of ~303 K and at the hot-side temperature of ~983 K. Our work demonstrates that the ZrCoBi-based half-Heuslers are highly promising for the application of mid- and high-temperature thermoelectric power generation. CopyrightItem Conformal symmetry, accelerated observers, and nonlocality(MDPI AG, 2019) Mashhoon, B.; PhysicsThe acceleration transformations form a 4-parameter Abelian subgroup of the conformal group of Minkowski spacetime. The passive interpretation of acceleration transformations leads to a congruence of uniformly accelerated observers in Minkowski spacetime. The properties of this congruence are studied in order to illustrate the kinematics of accelerated observers in relativistic physics. The generalization of this approach under conformal rescaling of the spacetime metric is examined.Item Predicting monovalent ion correlation effects in nucleic acids(American Chemical Society, 2019) Sun, L.-Z.; Zhou, Y.; Chen, S.-J.; PhysicsIon correlation and fluctuation can play a potentially significant role in metal ion-nucleic acid interactions. Previous studies have focused on the effects for multivalent cations. However, the correlation and fluctuation effects can be important also for monovalent cations around the nucleic acid surface. Here, we report a model, gMCTBI, that can explicitly treat discrete distributions of both monovalent and multivalent cations and can account for the correlation and fluctuation effects for the cations in the solution. The gMCTBI model enables investigation of the global ion binding properties as well as the detailed discrete distributions of the bound ions. Accounting for the ion correlation effect for monovalent ions can lead to more accurate predictions, especially in a mixed monovalent and multivalent salt solution, for the number and location of the bound ions. Furthermore, although the monovalent ion-mediated correlation does not show a significant effect on the number of bound ions, the correlation may enhance the accumulation of monovalent ions near the nucleic acid surface and hence affect the ion distribution. The study further reveals novel ion correlation-induced effects in the competition between the different cations around nucleic acids. CopyrightItem Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers(American Association for the Advancement of Science, 2019) Gari, R. R. S.; Chattrakun, K.; Marsh, B. P.; Mao, C.; Chada, N.; Randall, L. L.; King, G. M.; PhysicsEscherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.Item Multiple stochastic pathways in forced peptide-lipid membrane detachment(Nature Publishing Group, 2019) Utjesanovic M.; Matin T. R.; Sigdel K. P.; King G. M.; Kosztin I.; PhysicsWe have used high resolution AFM based dynamic force spectroscopy to investigate peptide-lipid membrane interactions by measuring the detachment (last-rupture) force distribution, P(F), and the corresponding force dependent rupture rate, k(F), for two different peptides and lipid bilayers. The measured quantities, which differed considerably for different peptides, lipid-membranes, AFM tips (prepared under identical conditions), and retraction speeds of the AFM cantilever, could not be described in terms of the standard theory, according to which detachment occurs along a single pathway, corresponding to a diffusive escape process across a free energy barrier. In particular, the prominent retraction speed dependence of k(F) was a clear indication that peptide-lipid membrane dissociation occurs stochastically along several detachment pathways. Thereby, we have formulated a general theoretical approach for describing P(F) and k(F), by assuming that peptide detachment from lipid membranes occurs, with certain probability, along a few dominant diffusive pathways. This new method was validated through a consistent interpretation of the experimental data. Furthermore, we have found that for moderate retraction speeds at intermediate force values, k(F) exhibits catch-bond behavior (i.e. decreasing detachment rate with increasing force). According to the proposed model this behavior is due to the stochastic mixing of individual detachment pathways which do not convert or cross during rupture. To our knowledge, such catch-bond mechanism has not been proposed and demonstrated before for a peptide-lipid interaction.
