Quercetin potentiates docosahexaenoic acid to suppress lipopolysaccharide-induced oxidative/inflammatory responses, alter lipid peroxidation products, and enhance the adaptive stress pathways in BV-2 microglial cells

Research Projects

Organizational Units

Journal Issue

Abstract

High levels of docosahexaenoic acid (DHA) in the phospholipids of mammalian brain have generated increasing interest in the search for its role in regulating brain functions. Recent studies have provided evidence for enhanced protective effects when DHA is administered in combination with phytochemicals, such as quercetin. DHA and quercetin can individually suppress lipopolysaccharide (LPS)-induced oxidative/inflammatory responses and enhance the antioxidative stress pathway involving nuclear factor erythroid-2 related factor 2 (Nrf2). However, studies with BV-2 microglial cells indicated rather high concentrations of DHA (IC 50 in the range of 60-80 µM) were needed to produce protective effects. To determine whether quercetin combined with DHA can lower the levels of DHA needed to produce protective effects in these cells is the goal for this study. Results showed that low concentrations of quercetin (2.5 µM), in combination with DHA (10 µM), could more effectively enhance the expression of Nrf2 and heme oxygenase 1 (HO-1), and suppress LPS-induced nitric oxide, tumor necrosis factor-[alpha], phospho-cytosolic phospholipase A 2 , reactive oxygen species, and 4-hydroxynonenal, as compared to the same levels of DHA or quercetin alone. These results provide evidence for the beneficial effects of quercetin in combination with DHA, and further suggest their potential as nutraceuticals for improving health.

Table of Contents

DOI

PubMed ID

Degree

Thesis Department

Rights

OpenAccess.

License

This work is licensed under a Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0