Energy Minimization of Portable Video Communication Devices Based on Power-Rate-Distortion Optimization

Research Projects

Organizational Units

Journal Issue

Abstract

Portable video communication devices operate on batteries with limited energy supply. However, video compression is computationally intensive and energy-demanding. Therefore, one of the central challenging issues in portable video communication system design is to minimize the energy consumption of video encoding so as to prolong the operational lifetime of portable video devices. In this work, based on power-rate-distortion (P-R-D) optimization, we develop a new approach for energy minimization by exploring the energy tradeoff between video encoding and wireless communication and exploiting the nonstationary characteristics of input video data. Both analytically and experimentally, we demonstrate that incorporating the third dimension of power consumption into conventional R-D analysis gives us one extra dimension of flexibility in resource allocation and allows us to achieve significant energy saving. Within the P-R-D analysis framework, power is tightly coupled with rate, enabling us to trade bits for joules and perform energy minimization through optimum bit allocation. Our experimental studies show that, for typical videos with nonstationary scene statistics, using the proposed P-R-D optimization technology, the energy consumption of video encoding can be significantly reduced (by up to 50%), especially in delay-tolerant portable video communication applications.

Table of Contents

DOI

PubMed ID

Degree

Thesis Department

Rights

OpenAccess.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.