Astromineralogy of the 13 μm Feature in the Spectra of Oxygen-rich Asymptotic Giant Branch Stars. I. Corundum and Spinel

No Thumbnail Available

Meeting name

Sponsors

Date

Journal Title

Format

Article

Research Projects

Organizational Units

Journal Issue

Abstract

Asymptotic giant branch (AGB) stars have several interesting infrared spectral features. Approximately half the oxygen-rich AGB stars to be investigated spectroscopically exhibit a feature at ~13 μm. The carrier of this feature has not yet been unequivocally identified but has been attributed to various dust species, including corundum (α-Al2O 3), spinel (MgAl2O4), and silica (SiO 2). In order to constrain the carrier of the 13 μm feature, we have used the one-dimensional radiative transfer code DUSTY to model the effects of composition and optical depth on the shape and strength of the emerging 13 μm feature from corundum and spinel grains. We have modeled various corundum, spinel, corundum-silicate, and spinel-silicate mixtures in dust shells surrounding O-rich AGB stars. These models demonstrate that (1) if corundum is present in these circumstellar dust shells, even at very low relative abundances, a ~13 μm feature should be observed; (2) corundum's weak ~21 μm feature will not be observed, even if it is responsible for the ~13 μm feature; (3) even at low relative abundances, spinel exhibits a feature at 16.8 μm that is not found in observations; and (4) the grains must be spherical. Other grain shapes (spheroids, ellipsoids, and hollow spheres) shift the features to longer wavelengths for both spinel and corundum. Our models show that spinel is unlikely to be the carrier of the 13 μm feature. The case for corundum as the carrier is strengthened but not yet proven.

Table of Contents

DOI

PubMed ID

Degree

Thesis Department

Rights

License