Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Agriculture, Food and Natural Resources (MU)
    • School of Natural Resources (MU)
    • Department of Soil, Environmental and Atmospheric Sciences (MU)
    • Soil, Environmental and Atmospheric Sciences publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Agriculture, Food and Natural Resources (MU)
    • School of Natural Resources (MU)
    • Department of Soil, Environmental and Atmospheric Sciences (MU)
    • Soil, Environmental and Atmospheric Sciences publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    A Diagnosis of the development of a Winter Anticyclone over North America

    Lupo, Anthony R., 1966-
    King, Melinda L.
    Smith, Phillip J.
    View/Open
    [PDF] DiagnosisDevelopmentWinterAnticyclone.pdf (898.4Kb)
    Date
    1995-08
    Contributor
    University of Missouri-Columbia. College of Agriculture, Food and Natural Resources (CAFNR). School of Natural Resources. Department of Soil, Environmental and Atmospheric Sciences.
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    This paper examines the 48-h life cycle of a winter anticyclone occurring over North America from 18 to 20 January 1979 using Goddard Laboratory for Atmospheres FGGE level IIIb (SOP 1) global analyses on a 4° latitude by 5° longitude grid. Applying the relatively new methodology of the Zwack-Okossi equation, results show that anticyclonic vorticity advection and cold-air advection acted to develop the anticyclone, while adiabatic warming in the descending air opposed development. Other forcing processes made only small contributions to anticyclone changes. Vertical profiles of the development quantities reveal that vorticity and temperature advections, as well as the adiabatic warming, maximized in the 200- 300-mb layer.
    URI
    http://hdl.handle.net/10355/2405
    Citation
    Monthly Weather Review Volume 123, Issue 8 pp. 2273-2284
    Collections
    • Soil, Environmental and Atmospheric Sciences publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems