Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos

MOspace/Manakin Repository

Breadcrumbs Navigation

Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos

Please use this identifier to cite or link to this item: http://dx.doi.org/10.1186/1471-2164-11-13

[+] show full item record


Title: Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos
Author: Zhang, Shaobing O; Mathur, Sachin; Hattem, Gaye; Tassy, Olivier; Pourquié, Olivier
Date: 2010-01-07
Citation: BMC Genomics. 2010 Jan 07;11(1):13
Abstract: Abstract Background Considerable progress has been made in our understanding of sex determination and dosage compensation mechanisms in model organisms such as C. elegans, Drosophila and M. musculus. Strikingly, the mechanism involved in sex determination and dosage compensation are very different among these three model organisms. Birds present yet another situation where the heterogametic sex is the female. Sex determination is still poorly understood in birds and few key determinants have so far been identified. In contrast to most other species, dosage compensation of bird sex chromosomal genes appears rather ineffective. Results By comparing microarrays from microdissected primitive streak from single chicken embryos, we identified a large number of genes differentially expressed between male and female embryos at a very early stage (Hamburger and Hamilton stage 4), long before any sexual differentiation occurs. Most of these genes are located on the Z chromosome, which indicates that dosage compensation is ineffective in early chicken embryos. Gene ontology analyses, using an enhanced annotation tool for Affymetrix probesets of the chicken genome developed in our laboratory (called Manteia), show that among these male-biased genes found on the Z chromosome, more than 20 genes play a role in sex differentiation. Conclusions These results corroborate previous studies demonstrating the rather inefficient dosage compensation for Z chromosome in birds and show that this sexual dimorphism in gene regulation is observed long before the onset of sexual differentiation. These data also suggest a potential role of non-compensated Z-linked genes in somatic sex differentiation in birds.
URI: http://dx.doi.org/10.1186/1471-2164-11-13
http://hdl.handle.net/10355/14805

This item appears in the following Collection(s)

[+] show full item record