[-] Show simple item record

dc.contributor.advisorDeng, Baolineng
dc.contributor.authorFang, Jun, 1971-eng
dc.date.issued2007eng
dc.date.submitted2007 Falleng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on March 6, 2008)eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2007.eng
dc.description.abstract[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] This study investigated the rejection of arsenic by several nanofiltration and inorganic clay membranes. Laboratory-scale experiments were conducted using both dead-end and cross flow systems. Firstly, the nanofiltration membranes, NF270 and TFC-SR-2, were selected for arsenic rejection in dead-end stirred cell filtration equipment. The results showed that rejection rate of As(V) could be higher than 90%. A better arsenic removal was achieved by the As-GAC/TFC-SR2 hybrid membrane system. The rejections of As(V) were modeled using Donnan Steric Pore Model (DSPM) model. The Film theory was coupled for consideration of the concentration polarization. The extended Nernst-Planck equation was solved numerically using a fourth order Runge-Kutta method. The calculated rejections were in good agreement with the experimental results. Secondly, nanofiltration membranes, GE-DK and GE-DL, were applied in cross flow systems to evaluate their performance for arsenic rejection. The results were interpreted by calculating the contribution of convection, diffusion and electrostatic migration to arsenic transport through the membranes. The calculated results showed the importance of the contribution of diffusive transport at low flux, but its contribution to transport decreased with the increasing permeate flux. The electromigrative and convective flux arisen correspondingly. The increase of electromigration was more important and gradually significant to the overall arsenate transport.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.identifier.merlinb62600874eng
dc.identifier.oclc212908415eng
dc.identifier.urihttps://doi.org/10.32469/10355/5958eng
dc.identifier.urihttps://hdl.handle.net/10355/5958
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsAccess is limited to the campus of the University of Missouri--Columbia.eng
dc.subject.lcshNanofiltrationeng
dc.subject.lcshMembrane separationeng
dc.subject.lcshArsenic wasteseng
dc.subject.lcshWater treatment plant residuals -- Purification -- Arsenic removaleng
dc.subject.lcshWater -- Purification -- Arsenic removaleng
dc.titleArsenic rejection by membrane processes : model development and applicationeng
dc.typeThesiseng
thesis.degree.disciplineCivil and Environmental Engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record