Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2021 Dissertations (UMKC)
    • 2021 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2021 Dissertations (UMKC)
    • 2021 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Software Analytics for Improving Program Comprehension

    Alanazi, Rakan
    View/Open
    [PDF] Software Analytics for Improving Program Comprehension (21.99Mb)
    Date
    2021
    Metadata
    [+] Show full item record
    Abstract
    Program comprehension is an essential part of software development and maintenance. Traditional methods of program comprehension, such as reviewing the codebase and documentation, are still challenging for understanding the software's overall structure and implementation. In recent years, software static analysis studies have emerged to facilitate program comprehensions, such as call graphs, which represent the system’s structure and its implementation as a directed graph. Furthermore, some studies focused on semantic enrichment of the software system problems using systematic learning analytics, including machine learning and NLP. While call graphs can enhance the program comprehension process, they still face three main challenges: (1) complex call graphs can become very difficult to understand making call graphs much harder to visualize and interpret by a developer and thus increases the overhead in program comprehension; (2) they are often limited to a single level of granularity, such as function calls; and (3) there is a lack of the interpretation semantics about the graphs. In this dissertation, we propose a novel framework, called CodEx, to facilitate and accelerate program comprehension. CodEx enables top-down and bottom-up analysis of the system's call graph and its execution paths for an enhanced program comprehension experience. Specifically, the proposed framework is designed to cope with the following techniques: multi-level graph abstraction using a coarsening technique, hierarchical clustering to represent the call graph into subgraphs (i.e., multi-levels of granularity), and interactive visual exploration of the graphs at different levels of abstraction. Moreover, we are also worked on building semantics of software systems using NLP and machine learning, including topic modeling, to interpret the meaning of the abstraction levels of the call graph.
    Table of Contents
    Introduction -- Multi-Level Call Graph for Program Comprehension -- Static Trace Clustering: Single-Level Approach -- Static Trace Clustering: Multi-Level Approach -- Topic Modeling for Cluster Analysis -- Visual Exploration of Software Clustered Traces -- Conclusion and Feature Work -- Appendix
    URI
    https://hdl.handle.net/10355/84389
    Degree
    Ph.D. (Doctor of Philosophy)
    Thesis Department
    Computer Science (UMKC)
    Collections
    • Computer Science and Electrical Engineering Electronic Theses and Dissertations (UMKC)
    • 2021 UMKC Dissertations - Freely Available Online

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems