Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2022 Dissertations (UMKC)
    • 2022 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2022 Dissertations (UMKC)
    • 2022 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    ICE-MILK: Intelligent Crowd Engineering using Machine-based Internet of Things Learning and Knowledge Building

    Almalki, Khalid Jaber
    View/Open
    [PDF] ICE-MILK: Intelligent Crowd Engineering using Machine-based Internet of Things Learning and Knowledge Building (77.68Mb)
    Date
    2022
    Metadata
    [+] Show full item record
    Abstract
    The lack of proper crowd safety control and management often leads to spreading human casualties and infectious diseases (e.g., COVID-19). Many Machine Learning (ML) technologies inspired by computer vision and video surveillance systems have been developed for crowd counting and density estimation to prevent potential personal injuries and deaths at densely crowded political, entertaining, and religious events. However, existing crowd safety management systems have significant challenges and limitations on their accuracy, scalability, and capacity to identify crowd characterization among people in crowds in real-time, such as a group characterization, impact of occlusions, mobility and contact tracing, and distancing. In this dissertation, we propose an Intelligent Crowd Engineering platform using Machine-based Internet of Things Learning, and Knowledge Building approaches (ICE-MILK) to enhance the accuracy, scalability, and crowd safety management capacity in real-time. Specifically, we design an ICE-MILK structure with three critical layers: IoT-based mobility characterization, ML-based video surveillance, and semantic information-based application layers. We built an IoT-based mobility characterization system by predicting and preventing potential disasters through real-time Radio Frequency (RF) data characterization and analytics. We tackle object group identification, speed, direction detection, and density for the mobile group among the many crowd mobility characteristics. Also, we tackled an ML-based video surveillance approach for effective dense crowd counting by characterizing scattered occlusions, named CSONet. CSONet recognizes the implications of event-induced, scene-embedded, and multitudinous obstacles such as umbrellas and picket signs to achieve an accurate crowd analysis result. Finally, we developed a couple of group semantics to track and prevent crowd-caused infectious diseases. We introduce a novel COVID-19 tracing application named Crowd-based Alert and Tracing Services (CATS) and a novel face masking and social distancing monitoring system for Modeling Safety Index in Crowd (MOSAIC). CATS and MOSAIC apply privacy-aware contact tracing, social distancing, and calculate spatiotemporal Safety Index (SI) values for the individual community to provide higher privacy protection, efficient penetration of technology, greater accuracy, and effective practical policy assistance.
    Table of Contents
    Introduction -- Literature review -- IoT-based mobility characterization -- ML-based video/image surveillance -- Semantic knowledge information-based tracing application -- Conclusions and future directions -- Appendix
    URI
    https://hdl.handle.net/10355/90141
    Degree
    Ph.D.
    Thesis Department
    Telecommunications and Computer Networking (UMKC)
     
    Computer Science (UMKC)
     
    Collections
    • Computer Science and Electrical Engineering Electronic Theses and Dissertations (UMKC)
    • 2022 UMKC Dissertations - Freely Available Online

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems