[-] Show simple item record

dc.contributor.authorBanks, William David, 1964-eng
dc.contributor.authorHarcharras, Asmaeng
dc.descriptionThis is a preprint of an article published in the Illinois Journal of Mathematics, vol.47 (2003), issue 4, pp.1063-1078.eng
dc.description.abstractIn this paper, we introduce a certain combinatorial property Z*(k), which is defined for every integer k ≥ 2, and show that every set E ⊂ Z with the property Z*(k) is necessarily a noncommutative Λ (2k) set. In particular, using number theoretic results about the number of solutions to so-called “S-unit equations,” we show that for any finite set Q of prime numbers, EQ is noncommutative Λ(p) for every real number 2 < p < ∞, where EQ is the set of natural numbers whose prime divisors all lie in the set Q.eng
dc.relation.ispartofMathematics publications (MU)eng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. College of Arts and Sciences. Department of Mathematicseng
dc.subjectFourier serieseng
dc.subject.lcshFourier serieseng
dc.titleNew examples of noncommutative Λ(p) setseng

Files in this item


This item appears in the following Collection(s)

  • Mathematics publications (MU)
    The items in this collection are the scholarly output of the faculty, staff, and students of the Department of Mathematics.

[-] Show simple item record