Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Tensile strength, shear strength, and effective stress for unsaturated sand

    Baltodano-Goulding, Rafael
    View/Open
    [PDF] public.pdf (247.7Kb)
    [PDF] short.pdf (17.08Kb)
    [PDF] research.pdf (3.926Mb)
    Date
    2006
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    It is generally accepted in geotechnical engineering that non-cohesive materials such as sands exhibit no or negligible tensile strength. However, there is significant evidence that interparticle forces arising from capillary and other pore-scale force mechanisms increase both the shear and tensile strength of soils. The general behavior of these pore-scale forces, their role in macroscopic stress, strength, and deformation behavior, and the changes that occur in the field under natural or imposed changes in water content remain largely uncertain. The primary objective of this research was to experimentally examine the manifestation of capillary-induced interparticle forces in partially saturated sands to macroscopic shear strength, tensile strength, and deformation behavior. This was accomplished by conducting a large suite of direct shear and direct tension tests using three gradations of Ottawa sand prepared to relatively "loose" and relatively "dense" conditions over a range of degrees saturation. Results were compared with previous experimental results from similar tests, existing theoretical formulations to define effective stress in unsaturated soil, and a hypothesis proposed to define a direct relationship between tensile strength and effective stress. The major conclusions obtained from this research include: Theoretical models tended to underpredict measured tensile strength. Analysis of results indicates that shear strength may be reasonably predicted using the sum of tensile strength and total normal stress as an equivalent effective stress [sigma prime equals alpha tau plus alpha nu]. Analysis also indicates that Bishop's (1959) effective stress formulation is a reasonable representation for effective stress by setting x equals S and by backcalculating x from shear tests. Tensile strength and apparent cohesion measured exhibited doublepeak behavior as a function of degree of saturation. Relatively dense specimen with water contents approaching the capillary regime start behaving as a loose specimen. Horizontal displacement at failure in tension exhibited double-peak behavior as a function of saturation. The two-peak behavior tends to flatten out as the grain size increases.
    URI
    https://doi.org/10.32469/10355/4364
    https://hdl.handle.net/10355/4364
    Degree
    Ph. D.
    Thesis Department
    Civil and environmental engineering (MU)
    Rights
    OpenAccess.
    Collections
    • 2006 MU dissertations - Freely available online
    • Civil and Environmental Engineering electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems