Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2017 Dissertations (UMKC)
    • 2017 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2017 Dissertations (UMKC)
    • 2017 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Framework for Automatic Identification of Paper Watermarks with Chain Codes

    Doynov, Plamen
    View/Open
    [PDF] Framework for Automatic Identification of Paper Watermarks with Chain Codes (13.35Mb)
    Date
    2017
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    In this dissertation, I present a new framework for automated description, archiving, and identification of paper watermarks found in historical documents and manuscripts. The early manufacturers of paper have introduced the embedding of identifying marks and patterns as a sign of a distinct origin and perhaps as a signature of quality. Thousands of watermarks have been studied, classified, and archived. Most of the classification categories are based on image similarity and are searchable based on a set of defined contextual descriptors. The novel method presented here is for automatic classification, identification (matching) and retrieval of watermark images based on chain code descriptors (CC). The approach for generation of unique CC includes a novel image preprocessing method to provide a solution for rotation and scale invariant representation of watermarks. The unique codes are truly reversible, providing high ratio lossless compression, fast searching, and image matching. The development of a novel distance measure for CC comparison is also presented. Examples for the complete process are given using the recently acquired watermarks digitized with hyper-spectral imaging of Summa Theologica, the work of Antonino Pierozzi (1389 – 1459). The performance of the algorithm on large datasets is demonstrated using watermarks datasets from well-known library catalogue collections.
    Table of Contents
    Introduction -- Paper and paper watermarks -- Automatic identification of paper watermarks -- Rotation, Scale and translation invariant chain code -- Comparison of RST_Invariant chain code -- Automatic identification of watermarks with chain codes -- Watermark composite feature vector -- Summary -- Appendix A. Watermarks from the Bernstein Collection used in this study -- Appendix B. The original and transformed images of watermarks -- Appendix C. The transformed and scaled images of watermarks -- Appendix D. Example of chain code
    URI
    https://hdl.handle.net/10355/63273
    Degree
    Ph.D.
    Thesis Department
    Electrical and Computer Engineering (UMKC)
     
    Telecommunications and Computer Networking (UMKC)
     
    Collections
    • Computer Science and Electrical Engineering Electronic Theses and Dissertations (UMKC)
    • 2017 UMKC Dissertations - Freely Available Online

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems