Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2023 Theses (MU)
    • 2023 MU Theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2023 Theses (MU)
    • 2023 MU Theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    GPU implementation of video analytics algorithms for aerial imaging

    Teters, Evan James
    View/Open
    [PDF] TetersEvanResearch.pdf (19.13Mb)
    Date
    2023
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    This work examines several algorithms that together make up parts of an image processing pipeline called Video Mosaicing and Summarization (VMZ). This pipeline takes as input geospatial or biomedical videos and produces large stitched-together frames (mosaics) of the video's subject. The content of these videos presents numerous challenges, such as poor lighting and a rapidly changing scene. The algorithms of VMZ were chosen carefully to address these challenges. With the output of VMZ, numerous tasks can be done. Stabilized imagery allows for easier object tracking, and the mosaics allow a quick understanding of the scene. These use-cases with aerial imagery are even more valuable when considered from the edge, where they can be applied as a drone is collecting the data. When executing video analytics algorithms, one of the most important metrics for real-life use is performance. All the accuracy in the world does not guarantee usefulness if the algorithms cannot provide that accuracy in a timely and actionable manner. Thus the goal of this work is to explore means and tools to implement video analytics algorithms, particularly the ones that make up the VMZ pipeline, on GPU devices{making them faster and more available for real-time use. This work presents four algorithms that have been converted to make use of the GPU in the GStreamer environment on NVIDIA GPUs. With GStreamer these algorithms are easily modular and lend themselves well to experimentation and real-life use even in pipelines beyond VMZ.
    URI
    https://hdl.handle.net/10355/96186
    https://doi.org/10.32469/10355/96186
    Degree
    M.S.
    Thesis Department
    Computer science (MU)
    Collections
    • 2023 MU Theses - Freely available online
    • Computer Science electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems