Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2017 Dissertations (MU)
    • 2017 MU dissertations - Access restricted to MU
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2017 Dissertations (MU)
    • 2017 MU dissertations - Access restricted to MU
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Analysis of cell signaling during floral abscission in arabidopsis

    Taylor, Isaiah
    View/Open
    [PDF] research.pdf (3.902Mb)
    [PDF] public.pdf (5.513Kb)
    Date
    2017
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The shedding of plant organs is known as abscission. Floral abscission in Arabidopsis is regulated by two related receptor[negation symbol]-like protein kinases (RLKs), HAESA and HAESA[negation symbol-like 2 (HAE/HSL2). Double mutants of HAE/HSL2 are completely defective in abscission and retain sepals, petals, and stamen indefinitely. We have utilized genetic suppressor screens of hae hsl2 mutant to identify additional regulatory mechanisms of floral abscission. We have uncovered a series of gain-of-function alleles of the receptor-like protein kinase gene SERK1, as well as loss of function alleles of the gene MAP-KINASE-PHOSPHATASE-1/MKP1. We further show that mutation of two components of the endoplasmic reticulum-associated protein degradation system can suppress a weak hae hsl2 mutant, suggesting that the weak hae hsl2 mutant receptor proteins undergo ER-associated protein degradation. We further perform a number of experiments to examine the impact of phosphorylation on the activity of HAE. These results provide a number of important mechanistic details to our understanding of floral abscission, and suggest many lines of inquiry for future research.
    URI
    https://hdl.handle.net/10355/63598
    https://doi.org/10.32469/10355/63598
    Degree
    Ph. D.
    Thesis Department
    Biological sciences (MU)
    Rights
    Access to files is limited to the University of Missouri--Columbia.
    Collections
    • 2017 MU dissertations - Access restricted to MU
    • Biological Sciences electronic theses and disserations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems