Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2007 Theses (MU)
    • 2007 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2007 Theses (MU)
    • 2007 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    In vitro three dimensional biomechanical comparison of two internal fixation methods in equine adult radii

    Janicek, John Charles
    View/Open
    [PDF] public.pdf (2.591Kb)
    [PDF] short.pdf (49.53Kb)
    [PDF] research.pdf (21.26Mb)
    Date
    2007
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Radius fracture configurations conducive to internal fixation most often contain a spiral or oblique fracture of the distal diaphysis. The location and fracture configurations are biomechanically challenging because of the limited amount of bone available distally for screw purchase and the complex three dimensional (3D) loading and unconstrained motions that occur in the distal radius. Development of an in vitro loading-measurement system that mimics in vivo unconstrained 3D relative motion of long bones, applies uniform load components over the entire length of a test specimen, and measures 3D relative motion to directly determine construct stiffness was verified. Stiffness results were comparable in magnitude to those theoretically predicted, and were consistently higher than results in the literature due to elimination of potting-fixture-test machine finite stiffness. Construct failure configurations were always reproducible with theoretical failure modes for bone. Biomechanical properties of the dynamic condylar screw (DCS) implant system and the double broad dynamic compression plate (bDCP) construct used to repair distal oblique diaphyseal osteotomies and ostectomies in adult cadaveric radii were compared. No statistical difference was observed between the DCS implant system and the bDCP construct stiffness during axial compression, torsion, or four-point bending; intact radii displayed the greatest stiffness. Torsion and four-point bending failure loads were not statistically different for the DCS implant system when compared to the bDCP construct.
    URI
    https://hdl.handle.net/10355/4927
    https://doi.org/10.32469/10355/4927
    Degree
    M.S.
    Thesis Department
    Veterinary medicine and surgery (MU)
    Collections
    • 2007 MU theses - Freely available online
    • Veterinary Medicine and Surgery electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems