Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2020 Theses (MU)
    • 2020 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2020 Theses (MU)
    • 2020 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Volumetric medical image segmentation with deep learning pipelines

    Toubal, Imad Eddine
    View/Open
    [PDF] ToubalImadEddineResearch.pdf (2.617Mb)
    Date
    2020
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Automated semantic segmentation in the domain of medical imaging can enable a faster, more reliable, and more affordable clinical workflow. Fully convolutional networks (FCNs) have been heavily used in this area due to the level of success that they have achieved. In this work, we first leverage recent architectural innovations to make an initial segmentation: (i) spatial and channel-wise squeeze and excitation mechanism; (ii) a 3D U-Net++ network and deep supervision. Second, we use classical methods for refining the initial segmentation: (i) spatial normalization and (ii) local 3D refinement network applied to patches. Finally, we put our methods together in a novel segmentation pipeline. We train and evaluate our models and pipelines on a dataset of a 120 abdominal magnetic resonance - volumetric - images (MRIs). The goal is to segment five different organs of interest (ORI): liver, kidneys, stomach, duodenum, and large bowel. Our experiments show that we can generate full resolution segmentation of comparable quality to the state-of-the-art methods without adding computational cost.
    URI
    https://hdl.handle.net/10355/94345
    https://doi.org/10.32469/10355/94345
    Degree
    M.S.
    Thesis Department
    Computer science (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Copyright held by author.
    Collections
    • 2020 MU theses - Freely available online
    • Computer Science electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems