Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Quantification of cell attachment on different materials as candidate electrodes for measurement of quantal exocytosis

    Sen, Atanu
    View/Open
    [PDF] public.pdf (2.178Kb)
    [PDF] short.pdf (9.992Kb)
    [PDF] research.pdf (4.948Mb)
    Date
    2008
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    A high throughput lab-on-a-chip device is being developed for single cell capture for the purpose of high time resolution quantal exocytosis measurement with high probability of cell docking. This device makes use of DLC (Diamond like Carbon) deposited on a conducting ITO (Indium Tin Oxide) film to bring about a suitable electrode incorporating biocompatibility, transparency and low resistivity and electrochemical activity to enhance cell docking and detect catecholamine release. Various materials have been tested for their ability to promote cell attachment. Diamond like Carbon being an established biocompatible and cytophilic material has been compared with other metal electrodes for cell attachment using an assay developed for this study. Cells tested for attachment were either the insulin-secreting cell line INS-1 or catecholamine-secreting bovine chromaffin cells. With either cell type, I found that the rank order of cell attachment following overnight culture was DLC [greater than] ITO, Pt [greater than] Au. Teflon has also tested as a candidate insulating material to prevent cell attachment outside of this docking site. The cell attachment can be enhanced by coating of poly-d-lysine on the metal while retaining the electrochemical activity of the metal electrode. The fraction of cells that were dead following overnight culture were similar among the tested material. In summary, my results suggest that electrodes fabricated from poly-d-lysine coated DLC insulated with Teflon will selectively promote attachment of cells to measurement electrodes.
    URI
    https://doi.org/10.32469/10355/5722
    https://hdl.handle.net/10355/5722
    Degree
    M.S.
    Thesis Department
    Biological engineering (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2008 MU theses - Freely available online
    • Biological Engineering electronic theses and dissertations - CAFNR (MU)
    • Biological Engineering electronic theses and dissertations - Engineering (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems